martes, 1 de marzo de 2011

Espectros de señalizacion

El espectro de frecuencia de un fenómeno ondulatorio (sonoro, luminoso o electromagnético), superposición de ondas de varias frecuencias, es una medida de la distribución de amplitudes de cada frecuencia. También se llama espectro de frecuencia al gráfico de intensidad frente a frecuencia de una onda particular.
El espectro de frecuencias o descomposición espectral de frecuencias puede aplicarse a cualquier concepto asociado con frecuencia o movimientos ondulatorios como son los colores, las notas musicales, las ondas electromagnéticas de radio o TV e incluso la rotación regular de la tierra.

Una fuente de luz puede tener muchos colores mezclados en diferentes cantidades (intensidades). Un arcoiris, o un prisma transparente, deflecta cada fotón según su frecuencia en un ángulo ligeramente diferente. Eso nos permite ver cada componente de la luz inicial por separado. Un gráfico de la intensidad de cada color deflactado por un prisma que muestre la cantidad de cada color es el espectro de frecuencia de la luz o espectro luminoso. Cuando todas las frecuencias visibles están presentes por igual, el efecto es el "color" blanco, y el espectro de frecuencias es uniforme, lo que se representa por una línea plana. De hecho cualquier espectro de frecuencia que consista en una línea plana se llama blanco de ahí que hablemos no solo de "color blanco" sino también de "ruido blanco".
De manera similar, una fuente de ondas sonoras puede ser una superposición de frecuencias diferentes. Cada frecuencia estimula una parte diferente de nuestra cóclea (caracol del oído). Cuando escuchamos una onda sonora con una sola frecuencia predominante escuhamos una nota. Pero en cambio un silbido cualquiera o un golpe repentino que estimule todos los receptores, diremos que contiene frecuencias dentro de todo el rango audible. Muchas cosas en nuestro entorno que calificamos como ruido frecuentemente contienen frecuencias de todo el rango audible. Así cuando un espectro de frecuencia de un sonido, o espectro sonoro. Cuando este espectro viene dada por una línea plana, decimos que el sonido asociado es ruido blanco.

Cada estación emisora de radio o TV es una fuente de ondas electromagnéticas que emite ondas cercanas a una frecuencia dada. En general las frecuencias se concentrará en una banda alrededor de la frecuencia nominal de la estación, a esta banda es a lo que llamamos canal. Una antena receptora de radio condensa diferentes ondas electromagnéticas en una única señal de amplitud de voltaje, que puede ser a su vez decodificada nuevamente en una señal de amplitud sonora, que es el sonido que oímos al encender la radio. El sintonizador de la radio selecciona el canal, de un modo similar a como nuestros receptores de la cóclea seleccionan una determinada nota. Algunos canales son débiles y otros fuertes. Si hacemos un gráfico de la intensidad del canal respecto a su frecuencia obtenemos el espectro electromagnético de la señal receptora.

Codificacion de datos

La codificación digital consiste en la traducción de los valores de tensión eléctrica analógicos que ya han sido cuantificados (ponderados) al sistema binario, mediante códigos preestablecidos. La señal analógica va a quedar transformada en un tren de impulsos de digital (sucesión de ceros y unos).
La codificación es, ante todo, la conversión de un sistema de datos a otro sistema llamado destino. De ello se desprende que la información resultante es equivalente a la información de origen. Un modo sencillo de entender esto es verlo a través de los idiomas, en el ejemplo siguiente: home = hogar, podemos entender que hemos cambiado una información de un sistema (inglés) a otro sistema (español) y que esencialmente la información sigue siendo la misma. La razón de la codificación está justificada por las operaciones que se necesiten realizar con posterioridad. En el ejemplo anterior para hacer entendible a una audiencia hispana un texto redactado en inglés es convertido al español.
La codificación es el último de los procesos que tiene lugar durante la conversión analógica-digital.


lunes, 7 de febrero de 2011

¿cuales son los factores que no permiten obtener una buena comunicacion?


El ruido es cualquier factor que perturba, interfiere, o crea una situación confusa en la comunicación. Puede ser interno (cuando el receptor no está prestando atención), o externo (cuando el mensaje es distorsionado por otros sonidos del ambiente. Puede presentarse en cualquier etapa del proceso de comunicación. Las instrucciones poco claras sobre cómo realizar una actividad pueden hacer que los empleados “oigan” instrucciones diferentes o incorrectas.

Dado que el ruido puede interferir con la comprensión, los dirigentes deben tratar de que no rebase el nivel que permita una buena comunicación. El malestar físico, el hambre, el dolor o fatiga, también pueden considerarse una forma de ruido y pueden impedir una comunicación satisfactoria. El problema empeora con un mensaje excesivamente complejo o poco claro.

Las barreras son factores de diferente naturaleza que crean dificultades para lograr una comunicación exitosa. Entre las principales que identifican los especialistas se encuentran las siguientes:

Percepciones diferentes. Las personas que tienen diferentes conocimientos y experiencias perciben el mismo fenómeno de distintas maneras.

Diferencias culturales y de lenguaje. Para que un mensaje sea comunicado como es
debido, las palabras utilizadas deben tener el mismo significado para el emisor y para el receptor, cosa que no siempre sucede, por diferencias culturales, o de otro tipo.

Emociones. El temor, la inseguridad, el afecto, o cualquier tipo de emociones o sentimientos influyen en la interpretación de un mensaje y pueden distorsionar su sentido original.

Relaciones interpersonales. El nivel de las relaciones que existan entre emisor y receptor (confianza, desconfianza, prejuicios) pueden afectar la efectividad de la comunicación.

Prejuicios, de percepción y atribución. Los estereotipos que tengan los participantes en el proceso de comunicación (“los abogados sólo dicen no se puede”, “los contadores son unos esquemáticos”) afecta el nivel de comprensión de mensajes y conductas.

Filtración o manipulación. La información puede “manejarse” para que sea vista por el receptor de manera más favorable. Por ejemplo, cuando un gerente le dice a su jefe lo qu él cree que quiere oir, está “filtrando” la información. Los intereses personales y las percepciones diferentes de lo que es importante para cada cual están presentes en la filtración.

Los ruidos y barreras pueden presentarse en cualquier etapa del proceso de comunicación, por ejemplo:

En el emisor: falta de claridad, ausencia de empatía con el receptor, asumir actitudes que
Bloquean, o resultar inorportuno.

En la transmisión: ruidos en el ambiente, interferencias, canal y contexto inadecuados, intermediarios.
En el receptor: falta de atención, percepción errónea, evaluación prematura, falta de empatía
con el emisor.
Para evitar o superar las barreras en las comunicaciones, se recomiendan, los siguientes comportamientos:
- Enviar mensajes claros, comprensibles, que se adecuen a las posibilidades del receptor.
- Utilizar expresiones que “faciliten “ la comunicación y evitar las que la “obstruyen”.
- Mantener la congruencia entre el lenguaje verbal y el no verbal.
- Asumir una actitud de empatía con el interlocutor. “Ponerse” en el lugar del otro.
- Escuchar con atención. (Escucha activa)
- Aclarar las diferencias en las percepciones.
- Utilizar la retroalimentación, para verificar la comprensión adecuada.
- Eliminar o evitar los ruidos o interferencias.
- Evitar los prejuicios, tratar de dejarlos a un lado.
- Controlar las emociones que puedan perjudicar las comunicaciones

Señal analógica


Una señal analógica es un tipo de señal generada por algún tipo de fenómeno electromagnético y que es representable por una función matemática continua en la que es variable su amplitud y periodo (representando un dato de información) en función del tiempo. Algunas magnitudes físicas comúnmente portadoras de una señal de este tipo son eléctricas como la intensidad, la tensión y la potencia, pero también pueden ser hidráulicas como la presión, térmicas como la temperatura, mecánicas, etc. La magnitud también puede ser cualquier objeto medible como los beneficios o pérdidas de un negocio.
En la naturaleza, el conjunto de señales que percibimos son analógicas, así la luz, el sonido, la energía etc, son señales que tienen una variación continua. Incluso la descomposición de la luz en el arco iris vemos como se realiza de una forma suave y continúa.
Una onda senoidal es una señal analógica de una sola frecuencia. Los voltajes de la voz y del video son señales analógicas que varían de acuerdo con el sonido o variaciones de la luz que corresponden a la información que se está transmitiendo.

Inconvenientes de las señales digitales


  1. Necesita una conversión analógica-digital previa y una decodificación posterior en el momento de la recepción.
  2. Requiere una sincronización precisa entre los tiempos del reloj del transmisor con respecto a los del receptor.
  3. Pérdida de calidad del muestreo.
  4. La señal digital requiere mayor ancho de banda que la señal analógica para ser transmitida.
  5. Respecto al instrumental de vídeo y sonido, las maquinas digitales muestran una calidad inferior a las analógicas.

Ventajas de las señales digitales


  1. Ante la atenuación, puede ser amplificada y reconstruida al mismo tiempo, gracias a los sistemas de regeneración de señales.
  2. Cuenta con sistemas de detección y corrección de errores, en la recepción.
  3. Facilidad para el procesamiento de la señal. Cualquier operación es fácilmente realizable a través de cualquier software de edición o procesamiento de señal.
  4. Permite la generación infinita sin pérdidas de calidad. Esta ventaja sólo es aplicable a los formatos de disco óptico; la cinta magnética digital, aunque en menor medida que la analógica (que sólo soporta como mucho 4 o 5 generaciones), también va perdiendo información con la multigeneración.
  5. Las señales digitales se ven menos afectadas a causa del ruido ambiental en comparación con las señales analógicas.

Señal digital con ruido


Es conveniente aclarar que, a pesar de que en los ejemplos señalados el término digital se ha relacionado siempre con dispositivos binarios, no significa que digital y binario sean términos intercambiables.
Referido a un aparato o instrumento de medida, decimos que es digital cuando el resultado de la medida se representa en un visualizador mediante números (dígitos) en lugar de hacerlo mediante la posición de una aguja, o cualquier otro indicador, en una escala.

Señal digital



La señal digital es un tipo de señal generada por algún tipo de fenómeno electromagnético en que cada signo que codifica el contenido de la misma puede ser analizado en término de algunas magnitudes que representan valores discretos, en lugar de valores dentro de un cierto rango. Por ejemplo, el interruptor de la luz sólo puede tomar dos valores o estados: abierto o cerrado, o la misma lámpara: encendida o apagada (véase circuito de conmutación). Esto no significa que la señal físicamente sea discreta ya que los campos electromagnéticos suelen ser continuos, sino que en general existe una forma de discretizarla unívocamente.
Los sistemas digitales, como por ejemplo el ordenador, usan lógica de dos estados representados por dos niveles de tensión eléctrica, uno alto, H y otro bajo, L (de High y Low, respectivamente, en inglés). Por abstracción, dichos estados se sustituyen por ceros y unos, lo que facilita la aplicación de la lógica y la aritmética binaria. Si el nivel alto se representa por 1 y el bajo por 0, se habla de lógica positiva y en caso contrario de lógica negativa.
Cabe mencionar que, además de los niveles, en una señal digital están las transiciones de alto a bajo y de bajo a alto, denominadas flanco de bajada y de subida, respectivamente. En la figura se muestra una señal digital donde se identifican los niveles y los flancos.

Muestreo y Reproducción de Señales


El muestreo es un método utilizado en la modulación de impulsos para identificar la señal de información mediante una secuencia de impulsos que representan información en un momento particular.
La muestra natural es un tipo de señal muestreada en la cual la cúspide de cada impulso de muestra sigue a la señal de información durante el tiempo de duración del impulso de la señal de muestreo.
El principio del muestreo establece que la información puede ser reconstruida, filtrando, cuando la frecuencia de señal de muestreo (FS) (velocidad de muestreo) es más de dos veces mayor que la frecuencia máxima de la señal de información (FM).
La velocidad de Nyquist es una condición que se produce cuando la frecuencia de la señal de muestreo es igual al doble de la frecuencia máxima de la señal de información (FS = 2 FM, donde FS es la frecuencia de la señal de muestreo y FM es la frecuencia máxima de la señal de información).
La reconstrucción de señales es el proceso consistente en recuperar información a partir de una señal muestreada. En el receptor, un filtro pasabajos filtra la señal muestreada y deja salir la información reconstruida que es una replica de la información original.
Cuando se transmite información en señales ultraaltas, la potencia requerida por el equipo de transmisión constituye un importante elemento de consideración. Uno de los métodos para reducir la potencia consiste en reducir la información en pequeñas muestras. Como resultado, solo se transmiten porciones de información y la onda "modulada por pulsos" permanece inactiva la mayor parte del tiempo. Se requiere un número suficiente de muestras para permitir la reconstrucción de la información total. Puede probarse matemáticamente que una señal muestreada a un ritmo dos veces mayor que el componente de frecuencia significativo superior (conocido como la velocidad de Nyquist) puede ser reconstruida en el receptor con un alto grado de precisión.

Modulación de Pulsos


La modulación de pulsos incluye muchos métodos diferentes para convertir información a forma de pulso para transferirlos de una fuente a un destino. Los cuatro métodos predominantes se describen a continuación:
  1. PWM. Este método a veces se llama modulación de duración del pulso (PDM) o modulación de longitud del pulso (PLM). El ancho del pulso (porción activa del ciclo de trabajo) es proporcionar a la amplitud de la señal analógica.
  2. PPM. La posición de un pulso de ancho constante, dentro de una ranura de tiempo prescrita, varia de acuerdo a la amplitud de la señal analógica.
  3. PAM. La amplitud de un pulso de longitud constante y de ancho constante varia de acuerdo a la amplitud de la señal analógica.
  4. PCM. La señal analógica se prueba y se convierte a una longitud fija, numero binario serial para transmisión. El numero binario varia de acuerdo a la amplitud de la señal analógica.
PAM se usa como una forma intermedia de modulación, con PSK, QAM y PCM, aunque raramente se use sola. PWM y PPM se usan en los sistemas de comunicación, de propositos especiales ( normalmente para el ejército ), pero raramente se usan para los sistemas comerciales. PCM es, por mucho, el metodo mas prevalente de modulacion de pulsos y consercuentemente, será el tema de discusión, análisis e implementación en lo que respecta a nuestro proyecto de tesis y circuitos complementarios.
PCM es un sistema binario; un pulso o ausencia de pulso, dentro de una ranura de tiempo prescrita representa ya sea una condición de lógica cero.
Los sistemas PCM se están haciendo cada vez más importantes, debido a ciertas ventajas inherentes sobre otros tipos de sistemas de modulación. Algunas de estas ventajas son las siguientes:
  1. En comunicación a larga distancia, las señales PCM pueden regenerarse completamente en estaciones repetidoras intermedias porque toda la información está contenida en el código. En cada repetidora se transmite una señal esencialmente libre de ruido. Los efectos del ruido no se acumulan y sólo hay que preocuparse por el ruido de la transmisión entre repetidoras adyacentes.
  2. Los circuitos de modulación y demodulación son todos digitales, alcanzando por ello gran confiabilidad y estabilidad, adaptándose rápidamente al diseño lógico de circuito integrado.
  3. Las señales pueden almacenarse y escalarse en el tiempo eficientemente. Por ejemplo, los datos de PCM pueden generarse en un satélite orbital una vez por minuto durante una órbita de 90 minutos y después retransmitirse a una estación terrestre en cuestión de pocos segundos. Las memorias digitales realizan el almacenaje muy eficientemente.
  4. Puede usarse un código eficiente para reducir la repetición innecesaria (la redundancia) en los mensajes. Por ejemplo, si se desea enviar "Una Feliz Navidad y un Próspero Año Nuevo" a un amigo distante por telegrama, es mucho más eficaz asignar un código (un número) a este mensaje redundante y enviar el código (el número). En la estación receptora, el decodificador reconoce el código y escribe el mensaje.
  5. Una codificación adecuada puede reducir los efectos del ruido y la interferencia. Como ser verá pronto, el ancho de banda puede intercambiarse por potencia de la señal; como el PCM puede escalarse en el tiempo, este también puede intercambiarse por potencia de la señal. El diseñador de sistemas de comunicación tiene, pues, mayor flexibilidad en el diseño de un sistema PCM para satisfacer determinados criterios de funcionamiento.


Ventajas de la Transmisión Digital.


La ventaja principal de la transmisión digital es la inmunidad al ruido. Las señales analógicas son más susceptibles que los pulsos digitales a la amplitud no deseada, frecuencia y variaciones de fases.
  1. Se prefieren a los pulsos digitales por su mejor procesamiento y multicanalizaciones que las señales analógicas. Los pulsos digitales pueden guardarse fácilmente, mientras que las señales analógicas no pueden.
  2. Los sistemas digitales utilizan la regeneración de señales, en vez de la amplificación de señales, por lo tanto producen un sistema más resistente al ruido que su contraparte analógica.
  3. Las señales digitales son más sencillas de medir y evaluar.
  4. Los sistemas digitales están mejores equipados para evaluar un rendimiento de error (por ejemplo, detección y corrección de errores), que los sistemas analógicos.

Modos de Transmisión de Datos


Simplex:
Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente, con esta formula es difícil la corrección de errores causados por deficiencias de línea. Como ejemplos de la vida diaria tenemos, la televisión y la radio.




Half Duplex.
En este modo, la transmisión fluye como en el anterior, o sea, en un único sentido de la transmisión de dato, pero no de una manera permanente, pues el sentido puede cambiar. Como ejemplo tenemos los Walkis Talkis.

  Full Duplex.
Es el método de comunicación más aconsejable, puesto que en todo momento la comunicación puede ser en dos sentidos posibles y así pueden corregir los errores de manera instantánea y permanente. El ejemplo típico sería el teléfono.


RS-232C.
RS-232-C estándar, en informática, estándar aceptado por la industria para las conexiones de comunicaciones en serie. Adoptado por la Asociación de Industrias Eléctricas, el estándar RS-232-C recomendado (RS es acrónimo de Recommended Standard) define las líneas específicas y las características de señales que utilizan las controladoras de comunicaciones en serie. Con el fin de estandarizar la transmisión de datos en serie entre dispositivos. La letra C indica que la versión actual de esta norma es la tercera de una serie.
Casi siempre el conector DB-25 va asociado con el RS-232C, y se muestran las disposiciones de los contactos en las figuras siguientes. Sin embargo, no está definido en el estándar y algunos fabricantes utilizan otro conector en gran parte de sus equipos.
Con este tipo de standard podemos transmitir y recibir al mismo tiempo, puesto que hay una patilla para cada una de las actividades.
Este tipo de standard tiene sus limitaciones en la transmisión y recepción como lo es la limitante de distancia, que es de 15 metros. Puede funcionar bien en recorridos de cable mucho más lagos con todas las velocidades pero siempre habrá riesgo de perdida de datos.
La transmisión digital es la transmisión de pulsos digitales, entre dos puntos, en un sistema de comunicación. Con los sistemas de transmisión digital, se requieren una facilidad física tal como un par de alambres metálicos, un cable coaxial o un vinculo de fibra óptica para interconectar a los dos puntos en el sistema. Los pulsos están contenidos dentro de y se propagan con la facilidad de transmisión.



 

Transmision en paralelo


La transmisión de datos entre ordenadores y terminales mediante cambios de corriente o tensión por medio de cables o canales; la transferencia de datos es en paralelo si transmitimos un grupo de bits sobre varias líneas o cables.
En la transmisión de datos en paralelo cada bit de un caracter se transmite sobre su propio cable. En la transmisión de datos en paralelo hay un cable adicional en el cual enviamos una señal llamada strobe ó reloj; esta señal le indica al receptor cuando están presentes todos los bits para que se puedan tomar muestras de los bits o datos que se transmiten y además sirve para la temporización que es decisiva para la correcta transmisión y recepción de los datos.
La transmisión de datos en paralelo se utiliza en sistemas digitales que se encuentran colocados unos cerca del otro, además es mucho mas rápida que la serie, pero además es mucho mas costosa.

Transmision en serie


En este tipo de transmisión los bits se trasladan uno detrás del otro sobre una misma línea, también se transmite por la misma línea.
Este tipo de transmisión se utiliza a medida que la distancia entre los equipos aumenta a pesar que es más lenta que la transmisión paralelo y además menos costosa. Los transmisores y receptores de datos serie son más complejos debido a la dificultad en transmitir y recibir señales a través de cables largos.
La conversión de paralelo a serie y viceversa la llevamos a cabo con ayuda de registro de desplazamiento.
La transmisión serie es sincrona si en el momento exacto de transmisión y recepción de cada bit esta determinada antes de que se transmita y reciba y asincrona cuando la temporizacion de los bits de un caracter no depende de la temporizacion de un caracter previo.

miércoles, 2 de febrero de 2011

Transmision Sincrona


Este tipo de transmisión se caracteriza porque antes de la transmisión de propia de datos, se envían señales para la identificación de lo que va a venir por la línea, es mucho mas eficiente que la Asincrona pero su uso se limita a líneas especiales para la comunicación de ordenadores, porque en líneas telefónicas deficientes pueden aparecer problemas.
Por ejemplo una transmisión serie es Sincrona si antes de transmitir cada bit se envía la señal de reloj y en paralelo es sincrona cada vez que transmitimos un grupo de bits.


Características
Los bloques a ser transmitidos tienen un tamaño que oscila entre 128 y 1,024 bytes. La señal de sincronismo en el extremo fuente, puede ser generada por el equipo terminal de datos o por el módem. Cuando se transmiten bloques de 1,024 bytes y se usan no más de 10 bytes de cabecera y terminación, el rendimiento de transmisión supera el 99 por 100.
Ventajas
  • Posee un alto rendimiento en la transmisión
  • Los equipamientos son de tecnología más completa y de costos más altos
  • Son aptos para transmisiones de altas velocidades (iguales o mayores a 1,200 baudios de velocidad de modulación)
  • El flujo de datos es más regular.

También llamada Transmisión Sincrónica. A todo el conjunto de bits y de datos se le denomina TRAMA.


TRANSMISION ASINCRONA


Esta se desarrolló para solucionar el problema de la sincronía y la incomodidad de los equipos.
En este caso la temporización empieza al comienzo de un caracter y termina al final, se añaden dos elementos de señal a cada caracter para indicar al dispositivo receptor el comienzo de este y su terminación.
Al inicio del caracter se añade un elemento que se conoce como "Start Space"
(espacio de arranque),y al final una marca de terminación.
Para enviar un dato se inicia la secuencia de temporización en el dispositivo receptor con el elemento de señal y al final se marca su terminación.


Transmisión Digital


En la transmisión digital existen dos notables ventajas lo cual hace que tenga gran aceptación cuando se compara con la analógica. Estas son:
  • El ruido no se acumula en los repetidores.
  • El formato digital se adapta por si mismo de manera ideal a la tecnología de estado sólido, particularmente en los circuitos integrados.
La mayor parte de la información que se transmite en una red portadora es de naturaleza analógica.Al convertir estas señales al formato digital se pueden aprovechar las dos características anteriormente citadas.
Para transmitir información digital(binaria 0 ó 1) por la red telefónica, la señal digital se convierte a una señal analógica compatible con la el equipo de la red y esta función se realiza en el Módem.
Para hacer lo inverso o sea con la señal analógica, se usan dos métodos diferentes de modulación:
La modulación por codificación de pulsos(MCP).
Es ventajoso transmitir datos en forma binaria en vez de convertirlos a analógico. Sin embargo, la transmisión digital está restringida a canales con un ancho de banda mucho mayor que el de la banda de la voz.



Definición de Transferencia




En un sistema analógico de transmisión tenemos a la salida de este una cantidad que varia continuamente.

En la transmisión analógica, la señal que transporta la información es continua, en la señal digital es discreta. La forma más sencilla de transmisión digital es la binaria, en la cual a cada elemento de información se le asigna uno de dos posibles estados.

Para identificar una gran cantidad de información se codifica un número específico de bits, el cual se conoce como caracter. Esta codificación se usa para la información e escrita.



La mayor de las computadoras en servicio hoy en día utilizan u operan con el sistema binario por lo cual viene más la transmisión binaria, ya sea de terminal a computadora o de computadora a computadora.

Comunicación


La comunicación es el proceso mediante el cual se transmite información de una entidad a otra. Los procesos de comunicación son interacciones mediadas por signos entre al menos dos agentes que comparten un mismo repertorio de signos y tienen unas reglas semióticas comunes.
Tradicionalmente, la comunicación se ha definido como "el intercambio de sentimientos, opiniones, o cualquier otro tipo de información mediante habla, escritura u otro tipo de señales". Todas las formas de comunicación requieren un emisor, un mensaje y un receptor destinado, pero el receptor no necesita estar presente ni consciente del intento comunicativo por parte del emisor para que el acto de comunicación se realice. En el proceso comunicativo, la información es incluida por el emisor en un paquete y canalizada hacia el receptor a través del medio. Una vez recibido, el receptor decodifica el mensaje y proporciona una respuesta.
El funcionamiento de las sociedades humanas es posible gracias a la comunicación. Esta consiste en el intercambio de mensajes entre los individuos.

Desde un punto de vista técnico se entiende por comunicación el hecho que un determinado mensaje originado en el punto A llegue a otro punto determinado B, distante del anterior en el espacio o en el tiempo. La comunicación implica la transmisión de una determinada información. La información como la comunicación supone un proceso; los elementos que aparecen en el mismo son:
  • Código. El código es un sistema de signos y reglas para combinarlos, que por un lado es arbitrario y por otra parte debe de estar organizado de antemano.
  • Canal. El proceso de comunicación que emplea ese código precisa de un canal para la transmisión de las señales. El Canal sería el medio físico a través del cual se transmite la comunicación.
  • La radiocomunicación es un sistema de telecomunicación que se realiza a través de ondas de radio u ondas hertzianas*,
  • En tercer lugar debemos considerar el Emisor. Es la persona que se encarga de transmitir el mensaje. Esta persona elije y selecciona los signos que le convienen, es decir, realiza un proceso de codificación; codifica el mensaje.
  • El Receptor será aquella persona a quien va dirigida la comunicación; realiza un proceso inverso al del emisor, ya que descifra e interpreta los signos elegidos por el emisor; es decir, descodifica el mensaje.
  • Naturalmente tiene que haber algo que comunicar, un contenido y un proceso que con sus aspectos previos y sus consecuencias motive el Mensaje.
  • Las circunstancias que rodean un hecho de comunicación se denominan Contexto situacional (situación), es el contexto en que se transmite el mensaje y que contribuye a su significado.